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Basin-Boundary Crossing Transitions in the Bistable BelousovZhabotinsky Reaction
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Basin-boundary crossing transitions, induced by large and sudden perturbations of a dynamical variable or of
a control parameter, are reported in the bistable Belou@tnabotinsky reaction in a continuously stirred

tank reactor. We provide a geometrical interpretation of these transitions by constructing a response diagram
in (2 + 1)-dimensional (phas¢ parameter) space, that displays the geometry of the basin boundary together
with the customary parameter dependence of steady states. The observed ease of basin-boundary crossing
arises from the proximity of the basin boundary and the manifold of initial steady states. This is shown to

be caused by the flow in phase space that is peculiar to stiff systems with fast and slow variables. On the
mechanistic level, the elementary step is identified that accounts for the divergence of trajectories from the
basin boundary.

1. Introduction
Pk

Many dynamical systems in physics, chemistry, biology, and h
engineering are bistable. The nature of the system frequently \ 2p 2
requires that it be maintained in one of the coexisting states ) T
(e.g. the live or productive state) and that inadvertent transitions y \
to the competing attractor be avoided. Therefore, to be able to
safeguard the integrity of such systems, it is essential to know
the critical domains in parameter and phase spaces where A
transitions occut. S S

In bistable systems, transitions take place either through NG 7

saddle-node bifurcations at critical values of the control 1K :
parameter(s) or through the crossing of a basin boundary into ot
the basin of a competing attractor. While the critical parameter l l

values of saddle-node transitions are usually easy to determine, ° >
basin boundaries are less readily accessible, and their locations

are generally unknown. In the course of studies of chemical Figure 1. Schematic (1+ 1)-dimensional response diagram of a
bistability in the chlorite/iodide system we encountered such Pistable system. Transitions may be induced by perturbing a dynamical
basin-boundary crossings (BBC) that seemed initially surprising Y271able (‘response), as in (8- 1), or by changing the control

. . - . parameter beyond the stability limit of the steady state, as i @).
until they were associated with the BBC mechanism. We ppc transitions, (@ — 1p') and (3 — 2p ), not anticipated by this

present here an experimental study of BBC in the Belousov  diagram, may take place after perturbations of the dynamical variable
Zhabotinsky (BZ) reaction together with numerical simulations (0 — 1p) and of the control parameter (& 2p), respectively.

and kinetic interpretations. _ saddle points. In systems with two or more dynamical variables,
.Blstaple systems are often characterized by a ste{:ldy statehowever, this (H 1)-dimensional response diagram no longer
bifurcation diagram similar to the one shown schematically in eypjains all possible transitions since it disregards the increased
Figure 1, which represents the local, adiabatic response to smallyimension and complexity of the basin boundary. For instance,
parameter changes. On the other hand, phase portraits and basipe perturbation (0~ 1p) may result in the “unexpected”
boundaries in phase space, which describe the global responseg snsition to p. Conversely, the perturbationgt— 1p) does
to large, nonadiabatic perturbations, are less readily availablepq;i tgke the system to 0 but reverts it insteaddo Apparently,
from experimentsand are often considered only qualitativily  he basin boundary lies within the interval (Qp)1 Another
but may be com_puted for model systeifﬁ"é It would be BBC transition (p — 2p) may be initiated by suddenly
valuable to combine the representation of steady states of the’lncreasing the control parameter from 0 fo 20f course, none
response diagram with the basin boundaries to obtain aqf these dynamics are truly unexpected if the basin boundaries
quantitative tool for interpreting and predicting both types of e considered in the original, unreduced phase shakest as
transitions. the geometry of high-dimensional objects may appear counter-
For systems with a single dynamical variable, the bifurcation intuitive when projected into a space of lower dimension,
diagram shown in Figure 1 represents correctly both transition related topological surprises may happen when a high-
mechanismsthose occuring by a saddle-node bifurcation as dimensional dynamical system is projected into a reduced phase
well as those induced by BBC, given here by the branch of space of lower dimension. For instance, the trajectories of a
chaotic system appear to cross in two dimensions, an event that
TPermanent address: L.V. Pizarzhevskii Institute of Physical Chemistry, cannot occur in unreduced phase space.
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of time scales of a stiff dynamical system. Finally, itis possible
to identify the chemical mechanism for the critical divergence
of trajectories at the basin boundary. Through a numerical
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; ose [ S = analysis of the rates of the elementary steps that constitute the

! Fooll 2 Oregonator mechanism, it is shown that the critical divergence

”“3 N ssn sz of trajectories at the basin boundary is due to the step that
080 oq0 produces HOBr from HBr@and Br.
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2. Experiments and Results

0
4]
-
a

The cylindrical plexiglass CSTR/(= 28 mL; thermostated
s at T = 36 °C) had a rectangular stirrer (8 15 mm paddle,
made of Teflon-coated steel) positionedrBthabove the reactor
bottom? The stirring rate was kept at 1500 rpm. The reactants
ss2 were peristaltically pumped through two ports on opposite sides
just below the stirrer blade at a constant rate of 1.99 mL/min,
o Loy corresponding to the residence timg = 282 s. Reagents,
Figure 2. (a) Experimental response diagram and responses to prepared from analytical grad(_a chemicqls, were stored in three
injections ¢ 1 M Ce(IV). The arrow 1 indicates a subcritical  different solutions, each of which contained 1.5 M3@®,: (1)
perturbation (1.1 mL b1 M Ce(IV)) and n 2 a supercritcal 8.1 x 1073 M NaBrO;; (2) 4.35x 103 M Cey(SQs)3 and 0.03
perturbation (1.3 mL b1 M Ce(lV)). The transition is (2> SS2). (b) M malonic acid; (3) the third solution contained NaBr of
Time series following perturbations 1 and 2. (c) Response to sudden gdjustable concentration, used as the control parameter. The
J(L;gnpgtgfrttirr]lg Cf‘:g:;m Opatr\;avrcr)]e;il?)'gr]igi.c;relrezp%?%e g'rﬁagr;rjnp; ;isti(':ll feedstreams 2 and 3 were premixed and entered the reactor at
perturbation 3 are sh’own. The nonadiab’atic transition is>($S2). tWICe_ _the flow rat_e as that of feedstrfeam 1. Experimental
(d) Time series following perturbation 3. conditions were similar to those described elsewR&r&he
state of the system was monitored by a 2.3 mm Pt electrode
model we interpret these transitions by examining the geometry together with a Hg/HgSgreference electrode. The impedance-
of the (2+ 1)-dimensional response diagram (2 variabte§ matched electrode signal was fed, after digitization by an A/D
parameter) together with that of the basin-boundary surface. Thisconverter, into a personal computer.
representation allows one to assess the relative roles of Three kinds of experiment were performed: In the first, the
deliberately induced and of noise-induced BBC transitions and hysteresis was mapped in small steps as a function of bromide
of saddle-node transitions. In contrast to the saddle-nodeconcentration in the inflow. In the second experiment, the
transition that may be initiated through (infinitesimally) small dynamical variable [Ce(IV)] was transiently increased by rapidly
perturbations, BBC requires large perturbations. BBC is related, injecting 1 M cerium(IV) sulfate solution into the premixed
in this regard, to excitabili and to canard explosioR&2°In feedstream, as shown in Figure 2a,b, using a rubber septum
all of these, a manifold exists in phase space that separates twand a microsyringe. In the third experiment, the system’s
types of trajectories that evolve qualitatively differently. Our response to sudden jumps of the control parameter]{Bras
analysis shows that in the BZ system, BBC may be induced so followed, always from the same initial condition, as shown in
readily because the basin boundary lies very close to the branchFigure 2c,d.
of initial steady states. The reason for this unique basin  Figure 2a,c shows the hysteretic adiabatic response as a
boundary topology is purely kinematic: it lies in the separation function of control parameter. At low [Bto, the system resides
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Figure 3. (a) Computed steady state manifold, separatrix sur@nd response to a supercritical perturbation of the dynamical varzable

[Ce(IV)]. The projection ¥,2 into the phase plane is included. (b) TheZ projection of (a). (c) Time series response to a supercritical injection
of Ce(IV).
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Figure 4. (a) Computed steady state manifold and separatrix suSasean Figure 3. Response to a supercritical jump in feed stream concentration

a = [BrO3z]o. The projection into the phase plane, including the parameter-induced shift of the separatrix, is drawn on the side pane,#) The (
projection of (a). (c) Time series corresponding to (a).

in steady state SS1, characterized by high [Ce(IV)] and Noyeg? as a skeleton model of the BeluseZhabotinsky
autocatalysis turned on. Beyond the upper critical bromide reaction, consists of the following steps:

concentrationC; = 4 x 10* M, the system switches to the
second, low [Ce(IV)] steady state SS2. When the [Bscan

k.
— — + _1»
is reversed, transition to SS1 occurs at the lower hysteresis limit BrO; +Br +2H HBrO, + HOBr

C, = 2.8 x 10° M. The upper, autocatalytic state SS1 is _ ke
sensitive to BBC as discussed below. It depends only weakly HBro, + Br +H" — 2HOBr
on control parameter, while the unreactive, lower SS2 shows ks
pronounced parameter dependence and curvature. BrO,” + HBroO, + 2Ce(lll) + 3H" —
To obtain the hysteresis limits, the bifurcation parameter was 2HBrO, + 2Ce(IV) + H,0 (1)

changed in step4A[Br~]o of decreasing magnitude. We found
that the lower hysteresis lim@; is independent of step size. In
contrast, the value of the hysteresis li@itof the upper branch
SS1 is highly sensitive tA[Br~]o. To document this phenom- ks 4 _

enon, the Br feed was suddenly switched from the same initial BrMA + Ce(IV) — 7/,f Br + Ce(lll)

state on SS1 at ([Bio = 10-’M) by replacing the feed stock

with a new solution of higher concentration, as indicated by  In a continuously stirred tank reactor, this mechanism may

k
2HBrO, — BrO,~ + HOBr

the horizontal arrows in Figure 2c. If the perturbatidfBr o be reduced to the following two-dimensional model

is sufficiently small, the system remains in SS1. Arrows 1 and

2 indicate this kind of response. Above a critical value of dy/dt = —k,ah’y — kohxy+ ksfbz+ ky(yo — y)  (2)
A[Br~]o, which is, however, small enough for the hysteresis

limit C; not to be exceeded, the system no longer relaxes to dz/dt = 2ksahx — ksbz+ ky(z, — 2)

SS1 but eventually transits to SS2 as indicated by arrow 3 in
Figure 2c. Figure 2d is the corresponding time series of the wherex is given through adiabatic elimination by:
electrode response.

The sensitivity_ o_f SS1 to _pertyrbations of the dy_namical Xzi{ — 2k,hy + k;ha — k, +
variable [Ce(IV)] is illustrated in Figure 2a,b. For sufficiently 4k,
small injected amounts of Ce(IV), the system reverts to SS1 as 2 2
indicated by the arrow labeled 1 in Figure 2a and the initial \/(k3ha— Koy — ko)™ + 8kiksh ay} ®3)
portion of Figure 2b. For perturbations greater than 1.1 mL of B o . _
1 M Ce(IV) injected solution, as indicated by the arrow labeled _ MEreX = [HBrO?], y=I[Brr], z=[Ce(IV)], h= [H'], a=
2, the system transits to SS2. In both transitions considered[BrOs 1. b = [MA]; yo = [Br7]o, 20 = [Ce(IV)]o andko is the

here, the basin boundary is apparently crossed. Its geometrylnVerse residence time. The rate constants and parameter values
will be calculated in the next section. arek; =2.0 M35k =2.0x 1PM2s7%, kg = 2.0 x 10°

M2sLk=40x 1M 1sL ks=10M1s L h=05

M, b=0.005M,yo=1x105M,2=1x 10°M,f=10.2,

ko = 0.01 s1. Notice that the acidityh, and malonic acid
3.1. Model. The two types of transitions observed in concentrationh, are retained explicitly in the rate equations.

experiments may be illustrated by the two-dimensional version  The bromate concentratioa was chosen as the control

of the Oregonator model. This model, proposed by Field and parameter. The steady state manifold was obtained by numerical

3. Interpretation and Discussion
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Figure 4a illustrates the response of the same system to a
0.001 F sudden and persistent parameter change that is large enough to
cross the separatrix, but too small to cause a saddle-node
transition. The steady states before and after the parameter
change are marked by the open and solid circles, respectively.
00001 | The sudden perturbation lifts the system away from the SS1
N manifold along the horizontal arrow and, in doing so, crosses
. the separatrix surface. Then the system relaxes to the competing
e SS2 (solid circle) at the new parameter value. The correspond-
ing time series for a supercritical parameter jump is shown in
1E-005 ’d/—/ Figure 4b and should be compared with the experimental result,
[ Figure 2d. The projection into the phase plane illustrates the
‘ L steady states at the old (open circles) and new (open circles)
0 0.02 0.04 0.06 parameter values, together with the old and new separatrices:
a the parametric perturbation redraws the basin boundary such
Figure 5. Response diagram showing the distance of the basin- that the (,)Id’ unperturbed phase point fglls.now into the basin
boundary surface in thedirection. of attraction of the competing SS2 (solid circle) on the lower
branch. Again, the projection into the,%) plane gives the

continuation. The separatrix was calculated at fixed values of unexpected responses of Figures 1 and 2a. In general, the
a as the inset of the unstable steady state (saddle point) bycritical value of the perturbation depends on the rate with which
integrating the model with reversed time, starting close to the the perturbation is applied.
saddle point. The separatrix surface S in the combined phase 3.3. Discussion.We have demonstrated experimentally and
and control space was obtained by repeating this calculationcomputationally two types of basin-boundary transitions that
for a range ofa. The responses to the perturbations applied to may result from large, sudden changes of a dynamical variable
a and toz were also obtained by numerical integration. on the one hand or of a control parameter on the other hand. In
3.2. Results. Figure 3a and 4a offer different views of the general, the critical value of a perturbation depends on the rate
same steady state manifold and separatrix surface S. Figure 3avith which the perturbation is appliéd. In addition to drawing
illustrates the response to perturbation of the dynamical variable the attention of experimentalists to the importance of choosing
z, and Figure 4a to perturbation of the control paramatdhe a sufficiently small step size in the determination of bifurcation
vertical lines that make up the surface S are the separatricesdiagrams and to the shortcomings of 41 1)-dimensional
calculated at constant valuesaf On the upper branch SS1 of response diagrams, the three further aims are presently: to
stable steady states (solid lines) at higind lowy, autocatalysis ~ explain the close relationship of BBC transitions to the
is switched on; on the other, lower branch SS2, autocatalysis isphenomena of excitability and canard explosi&t®o explain
off. The branch of unstable steady states (saddle points, shownyhy such transitions are more likely in stiff systems with widely

by dashed line) lies in the separatrix surface, while the stable separated time scales, and finally to determine the reaction step
branches begin to diverge from this surface at the two saddle-tnat plays the key role in triggering the basin-boundary

node points. The projections into thgz) and @,2) planes are  {ransitions.
the traditional phase and response diagrams.

It should be noted that the separatrix surface S is vertical at
the branch of unstable steady states, but it bends into the
direction of they axis at high values of. Beyond the upper

The bistability transition induced by a sudden, nonadiabatic
change of control parameter results from basin-boundary
crossing and is closely related to excitability and canard
. i explosions. In all these phenomena there exists a threshold or
saddle-node point, this surface tends to hug the upper SSlboundary in phase space such that trajectories, starting arbitrarily

bfa”Ch and to diverge from it only _gradu_ally. To illustrate this, close but on opposite sides of it, evolve in qualitatively different
Figure 5 shows the shortest vertical distance from the upper L2021 L .
ways. Inthe case of excitabilif;21a subcritical perturbation

SS1 branch to the separatrix surface. Accordingly, the shortestresults in a trajectory that smoothly retums the system to its

distance from any steady state on the upper branch to the . . i : .
y y - starting point, whereas a supercritical perturbation results in a

separatrix surface is less than the distances to either theI ; weursion in oh before eventually returning th
corresponding saddle-node point or to the saddle point. Hence arge excursio phase space betore eventually returning the
system to its steady state. In canards, small amplitude oscil-

the separatrix may be reached relatively easily through perturba->~" . X S
tions that are smaller in magnitude than those required in theltatelzogfnzlrle Iti:r?ir'[]sf:?/rcrllec::rlggc;;zrg; {géi);ag?np%isﬁgga&%ggv?ﬁg
colr:r.espondln.g one-variable system. . curvature of trajectories is zet®20

igure 3a illustrates the response to a perturbation ofzthe N ] ) )
variable at fixeds, indicated by the vertical arrow, starting from  Although BBC transitions are not restricted to stiff dynamical
the open circle. A sufficiently large perturbation crosses the Systems, they are more likely to occur in such systems. To
separatrix, and the system relaxes to the coexisting SS2, adllustrate the relationship between stiffness and the geometry
indicated by the trajectory. The projection into the phase plane of basin boundaries, consider the classical Bonhoeffan der
(y,2) shows the steady states and the separatrix together withPol systert?whose equations and parameters values are given
the perturbation and the response trajectory. The projection intoin the caption of Figure 6. Changing the time scale parameter
the @a) plane represents the “unexpected” response mentionede changes neither the nullclines nor the values of the steady
in the Introduction. The full response diagram, Figure 3a, and state concentrations. However, for small values, afchanges
its projection into the phase plane, Figure 3b, including the faster tharz and the trajectories are therefore nearly parallel to
trajectory shown, resolve the apparent paradox. Figure 3¢ showghex -axis, except on the S-shapeaulicline. Hence, a¢ <
the corresponding time series of relaxation to the competing 1, the inset of the saddle point (the basin boundary) also bends
attractor. The response is similar to that observed in experiment,in the direction of the fast variable. This is shown in Figure
Figure 2a,b. 6. Consequently, foe < 1 the threshold for basin-boundary
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Figure 6. Phase portrait for the Bonhoeffevan der Pol systemx

= lle(x — (¥/3) +y), y = b — x — cy. Parameter values ace= 2.0,

b = 0.1. The dotted lines are the basin boundaries for two different
values ofe. Note how the basin boundary appoaches the steady states
at the lower value ot.
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Figure 7. (a) Divergence of two trajectories (labeled 1 and 2) starting
arbitrarily close to but on opposite sides of the basin boundary for
system 2a = 0.055. The full dots are the asymptotic steady states. (b,
c) time evolution of the variableg z along the two trajectories. (d, e,

f) show the initial divergence of (a, b, c) in greater detail.

transitions becomes smaller, and relatively small parameter
changes may lead to the transitions of the type shown in Figure
4.

The gradual convergence of the stable SS1 manifold and the
separatrix at the saddle-node point for the Oregonator model,
as shown in Figure 5, makes noise-induced transitions very
likely in the neighborhood of the saddle-node point. Hence, in
the presence of external noise, noise-induced transitions will
occur in proportion to the noise level and the reduced threshold

Ali et al.
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Figure 8. Rates of the five steps in scheme 1 along the two trajectories
shown in Figure 7.

ful.2* The type of facile, noise-induced BBC transition discussed
here lends further support to the earlier explandbiaf the
effect of stirring on the attributes of limit cycle oscillations: it

is often observed that the oscillation amplitude and period
decrease when an oscillating system is stirred more slowly and
becomes more inhomogenedad?® It was arguetf that noise-
induced perturbations similar to the ones considered here for
bistable systems will cause the limit cycle to contract and
oscillations to accelerate.

To conclude this Discussion, we examine the chemical basis
of the divergence of trajectories that start arbitrarily close to,
but on opposits sides of, a basin boundary. Figure 7 illustrates
the evolution of two such trajectories. They startyaiz{) and
(Y2,22) wherey; =y, andz; = 2z + 1078, The three left panels
are the phase portrait (panel a) and time evolution of the
variablesy (panel b) andz (panel c) of the trajectories from
their initial conditions to the final states. The right-hand panels
d, e, f illustrate the evolution of the two adjacent trajectories
up to a point where they suddenly begin to diverge. The key
question, at this point, is: which chemical step in mechanism
1 is responsible for this critical divergence?

Figure 7e,f shows that the valueszadiverge much less than
those ofy—hence the clue to the divergence must be sought in
the evolution ofy. The reason why initially the variable
diverges very little can be understood by examining the rates
of the two steps 1c and 1e (Figure 8c,e), which contribute to
the rate of change & The rate of step le is twice as large as
that of 1c, but its value does not diverge significantly. The
rate of change of = [Br~] is governed by steps la, 1b, and

values, preventing the system from ever reaching the adiabaticle. Among these three steps, 1e may be discounted since the

saddle-node point predicted by the{11)-d response diagram,

Figure 1. In retrospect it is therefore not surprising that the
search for critical growth of fluctuations, anticipated near the
bistability limit of the chlorite/iodide reaction was not success-

divergence in its rate is small (Figure 8e). Similarly, step 1a
may be neglected since the absolute magnitude of its rate is 1
order of magnitude less than that of 1b. Hence, we conclude
that the reaction step 1b (i.e. the production of HOBr from
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HBrO;z; and Br) is the key step that triggers the divergence of (9) Dutt, A. K.; Menzinger, M.J. Phys. Chem199Q 94, 4867. Al

; ; ; F.; Menzinger, M.J. Phys. Chem1991, 95, 6408.
trajectories near the unstable manifold. (10) DeKepper, P.; Boissonade,1J.Chem. PhysL981, 75, 189.
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