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Basin-boundary crossing transitions, induced by large and sudden perturbations of a dynamical variable or of
a control parameter, are reported in the bistable Belousov-Zhabotinsky reaction in a continuously stirred
tank reactor. We provide a geometrical interpretation of these transitions by constructing a response diagram
in (2+ 1)-dimensional (phase+ parameter) space, that displays the geometry of the basin boundary together
with the customary parameter dependence of steady states. The observed ease of basin-boundary crossing
arises from the proximity of the basin boundary and the manifold of initial steady states. This is shown to
be caused by the flow in phase space that is peculiar to stiff systems with fast and slow variables. On the
mechanistic level, the elementary step is identified that accounts for the divergence of trajectories from the
basin boundary.

1. Introduction

Many dynamical systems in physics, chemistry, biology, and
engineering are bistable. The nature of the system frequently
requires that it be maintained in one of the coexisting states
(e.g. the live or productive state) and that inadvertent transitions
to the competing attractor be avoided. Therefore, to be able to
safeguard the integrity of such systems, it is essential to know
the critical domains in parameter and phase spaces where
transitions occur.1

In bistable systems, transitions take place either through
saddle-node bifurcations at critical values of the control
parameter(s) or through the crossing of a basin boundary into
the basin of a competing attractor. While the critical parameter
values of saddle-node transitions are usually easy to determine,
basin boundaries are less readily accessible, and their locations
are generally unknown. In the course of studies of chemical
bistability in the chlorite/iodide system we encountered such
basin-boundary crossings (BBC) that seemed initially surprising
until they were associated with the BBC mechanism. We
present here an experimental study of BBC in the Belousov-
Zhabotinsky (BZ) reaction together with numerical simulations
and kinetic interpretations.
Bistable systems are often characterized by a steady state

bifurcation diagram similar to the one shown schematically in
Figure 1, which represents the local, adiabatic response to small
parameter changes. On the other hand, phase portraits and basin
boundaries in phase space, which describe the global response
to large, nonadiabatic perturbations, are less readily available
from experiments2 and are often considered only qualitatively3,4

but may be computed for model systems.1,5,6 It would be
valuable to combine the representation of steady states of the
response diagram with the basin boundaries to obtain a
quantitative tool for interpreting and predicting both types of
transitions.
For systems with a single dynamical variable, the bifurcation

diagram shown in Figure 1 represents correctly both transition
mechanismssthose occuring by a saddle-node bifurcation as
well as those induced by BBC, given here by the branch of

saddle points. In systems with two or more dynamical variables,
however, this (1+ 1)-dimensional response diagram no longer
explains all possible transitions since it disregards the increased
dimension and complexity of the basin boundary. For instance,
the perturbation (0f 1p) may result in the “unexpected”
transition to 1p′. Conversely, the perturbation (1p′ f 1p) does
not take the system to 0 but reverts it instead to 1p′. Apparently,
the basin boundary lies within the interval (0, 1p). Another
BBC transition (2p f 2p′) may be initiated by suddenly
increasing the control parameter from 0 to 2p. Of course, none
of these dynamics are truly unexpected if the basin boundaries
are considered in the original, unreduced phase space.7 Just as
the geometry of high-dimensional objects may appear counter-
intuitive when projected into a space of lower dimension,8

related topological surprises may happen when a high-
dimensional dynamical system is projected into a reduced phase
space of lower dimension. For instance, the trajectories of a
chaotic system appear to cross in two dimensions, an event that
cannot occur in unreduced phase space.
We present here experimental evidence for the two nonadia-

batic transitions just described in the bistable Belousov-
Zhabotinsky system. Using a two-variable flow-Oregonator
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Figure 1. Schematic (1+ 1)-dimensional response diagram of a
bistable system. Transitions may be induced by perturbing a dynamical
variable (“response”), as in (0f 1), or by changing the control
parameter beyond the stability limit of the steady state, as in (0f 2).
BBC transitions, (1p f 1p′) and (2p f 2p ′), not anticipated by this
diagram, may take place after perturbations of the dynamical variable
(0 f 1p) and of the control parameter (0f 2p), respectively.
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model we interpret these transitions by examining the geometry
of the (2+ 1)-dimensional response diagram (2 variables+ 1
parameter) together with that of the basin-boundary surface. This
representation allows one to assess the relative roles of
deliberately induced and of noise-induced BBC transitions and
of saddle-node transitions. In contrast to the saddle-node
transition that may be initiated through (infinitesimally) small
perturbations, BBC requires large perturbations. BBC is related,
in this regard, to excitability21 and to canard explosions.19,20 In
all of these, a manifold exists in phase space that separates two
types of trajectories that evolve qualitatively differently. Our
analysis shows that in the BZ system, BBC may be induced so
readily because the basin boundary lies very close to the branch
of initial steady states. The reason for this unique basin
boundary topology is purely kinematic: it lies in the separation

of time scales of a stiff dynamical system. Finally, it is possible
to identify the chemical mechanism for the critical divergence
of trajectories at the basin boundary. Through a numerical
analysis of the rates of the elementary steps that constitute the
Oregonator mechanism, it is shown that the critical divergence
of trajectories at the basin boundary is due to the step that
produces HOBr from HBrO2 and Br-.

2. Experiments and Results

The cylindrical plexiglass CSTR (V ) 28 mL; thermostated
at T ) 36 °C) had a rectangular stirrer (8× 15 mm paddle,
made of Teflon-coated steel) positioned 30mmabove the reactor
bottom.9 The stirring rate was kept at 1500 rpm. The reactants
were peristaltically pumped through two ports on opposite sides
just below the stirrer blade at a constant rate of 1.99 mL/min,
corresponding to the residence timeτ0 ) 282 s. Reagents,
prepared from analytical grade chemicals, were stored in three
different solutions, each of which contained 1.5 M H2SO4: (1)
8.1× 10-3 M NaBrO3; (2) 4.35× 10-3 M Ce2(SO4)3 and 0.03
M malonic acid; (3) the third solution contained NaBr of
adjustable concentration, used as the control parameter. The
feedstreams 2 and 3 were premixed and entered the reactor at
twice the flow rate as that of feedstream 1. Experimental
conditions were similar to those described elsewhere.10 The
state of the system was monitored by a 0.1× 3 mm Pt electrode
together with a Hg/HgSO4 reference electrode. The impedance-
matched electrode signal was fed, after digitization by an A/D
converter, into a personal computer.
Three kinds of experiment were performed: In the first, the

hysteresis was mapped in small steps as a function of bromide
concentration in the inflow. In the second experiment, the
dynamical variable [Ce(IV)] was transiently increased by rapidly
injecting 1 M cerium(IV) sulfate solution into the premixed
feedstream, as shown in Figure 2a,b, using a rubber septum
and a microsyringe. In the third experiment, the system’s
response to sudden jumps of the control parameter [Br-]0 was
followed, always from the same initial condition, as shown in
Figure 2c,d.
Figure 2a,c shows the hysteretic adiabatic response as a

function of control parameter. At low [Br-]0, the system resides

Figure 2. (a) Experimental response diagram and responses to
injections of 1 M Ce(IV). The arrow 1 indicates a subcritical
perturbation (1.1 mL of 1 M Ce(IV)) and in 2 a supercritical
perturbation (1.3 mL of 1 M Ce(IV)). The transition is (2f SS2). (b)
Time series following perturbations 1 and 2. (c) Response to sudden
jumps of the control parameter [Br-]0. The response diagram is as in
(a). Starting from 0, two subcritical 1, 2 and one supercritical
perturbation 3 are shown. The nonadiabatic transition is (3f SS2).
(d) Time series following perturbation 3.

Figure 3. (a) Computed steady state manifold, separatrix surfaceS, and response to a supercritical perturbation of the dynamical variablez )
[Ce(IV)]. The projection (y,z) into the phase plane is included. (b) The (a,z) projection of (a). (c) Time series response to a supercritical injection
of Ce(IV).
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in steady state SS1, characterized by high [Ce(IV)] and
autocatalysis turned on. Beyond the upper critical bromide
concentrationC1 ) 4 × 104 M, the system switches to the
second, low [Ce(IV)] steady state SS2. When the [Br-]0 scan
is reversed, transition to SS1 occurs at the lower hysteresis limit
C2 ) 2.8 × 106 M. The upper, autocatalytic state SS1 is
sensitive to BBC as discussed below. It depends only weakly
on control parameter, while the unreactive, lower SS2 shows
pronounced parameter dependence and curvature.
To obtain the hysteresis limits, the bifurcation parameter was

changed in steps∆[Br-]0 of decreasing magnitude. We found
that the lower hysteresis limitC2 is independent of step size. In
contrast, the value of the hysteresis limitC1 of the upper branch
SS1 is highly sensitive to∆[Br-]0. To document this phenom-
enon, the Br- feed was suddenly switched from the same initial
state on SS1 at ([Br-]0 ) 10-7M) by replacing the feed stock
with a new solution of higher concentration, as indicated by
the horizontal arrows in Figure 2c. If the perturbation∆[Br-]0
is sufficiently small, the system remains in SS1. Arrows 1 and
2 indicate this kind of response. Above a critical value of
∆[Br-]0, which is, however, small enough for the hysteresis
limit C1 not to be exceeded, the system no longer relaxes to
SS1 but eventually transits to SS2 as indicated by arrow 3 in
Figure 2c. Figure 2d is the corresponding time series of the
electrode response.
The sensitivity of SS1 to perturbations of the dynamical

variable [Ce(IV)] is illustrated in Figure 2a,b. For sufficiently
small injected amounts of Ce(IV), the system reverts to SS1 as
indicated by the arrow labeled 1 in Figure 2a and the initial
portion of Figure 2b. For perturbations greater than 1.1 mL of
1 M Ce(IV) injected solution, as indicated by the arrow labeled
2, the system transits to SS2. In both transitions considered
here, the basin boundary is apparently crossed. Its geometry
will be calculated in the next section.

3. Interpretation and Discussion

3.1. Model. The two types of transitions observed in
experiments may be illustrated by the two-dimensional version
of the Oregonator model. This model, proposed by Field and

Noyes22 as a skeleton model of the Belusov-Zhabotinsky
reaction, consists of the following steps:

In a continuously stirred tank reactor, this mechanism may
be reduced to the following two-dimensional model

wherex is given through adiabatic elimination by:

Herex ≡ [HBrO2], y≡ [Br-], z≡ [Ce(IV)], h≡ [H+], a≡
[BrO3

- ], b ≡ [MA]; y0 ≡ [Br-]0, z0 ≡ [Ce(IV)]0 andk0 is the
inverse residence time. The rate constants and parameter values
arek1 ) 2.0 M-3 s-1, k2 ) 2.0× 108 M-2 s-1, k3 ) 2.0× 103

M-2 s-1, k4 ) 4.0× 108 M-1 s-1, k5 ) 1.0 M-1 s-1, h ) 0.5
M, b ) 0.005 M,y0 ) 1× 10-5 M, z0 ) 1× 10-5 M, f ) 0.2,
k0 ) 0.01 s-1. Notice that the acidity,h, and malonic acid
concentration,b, are retained explicitly in the rate equations.
The bromate concentrationa was chosen as the control

parameter. The steady state manifold was obtained by numerical

Figure 4. (a) Computed steady state manifold and separatrix surfaceSas in Figure 3. Response to a supercritical jump in feed stream concentration
a ) [BrO3

-]0. The projection into the phase plane, including the parameter-induced shift of the separatrix, is drawn on the side panel. (b) The (a,z)
projection of (a). (c) Time series corresponding to (a).
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continuation. The separatrix was calculated at fixed values of
a as the inset of the unstable steady state (saddle point) by
integrating the model with reversed time, starting close to the
saddle point. The separatrix surface S in the combined phase
and control space was obtained by repeating this calculation
for a range ofa. The responses to the perturbations applied to
a and toz were also obtained by numerical integration.
3.2. Results. Figure 3a and 4a offer different views of the

same steady state manifold and separatrix surface S. Figure 3a
illustrates the response to perturbation of the dynamical variable
z, and Figure 4a to perturbation of the control parametera. The
vertical lines that make up the surface S are the separatrices
calculated at constant values ofa. On the upper branch SS1 of
stable steady states (solid lines) at highzand lowy, autocatalysis
is switched on; on the other, lower branch SS2, autocatalysis is
off. The branch of unstable steady states (saddle points, shown
by dashed line) lies in the separatrix surface, while the stable
branches begin to diverge from this surface at the two saddle-
node points. The projections into the (y,z) and (a,z) planes are
the traditional phase and response diagrams.
It should be noted that the separatrix surface S is vertical at

the branch of unstable steady states, but it bends into the
direction of they axis at high values ofz. Beyond the upper
saddle-node point, this surface tends to hug the upper SS1
branch and to diverge from it only gradually. To illustrate this,
Figure 5 shows the shortest vertical distance from the upper
SS1 branch to the separatrix surface. Accordingly, the shortest
distance from any steady state on the upper branch to the
separatrix surface is less than the distances to either the
corresponding saddle-node point or to the saddle point. Hence
the separatrix may be reached relatively easily through perturba-
tions that are smaller in magnitude than those required in the
corresponding one-variable system.
Figure 3a illustrates the response to a perturbation of thez

variable at fixeda, indicated by the vertical arrow, starting from
the open circle. A sufficiently large perturbation crosses the
separatrix, and the system relaxes to the coexisting SS2, as
indicated by the trajectory. The projection into the phase plane
(y,z) shows the steady states and the separatrix together with
the perturbation and the response trajectory. The projection into
the (z,a) plane represents the “unexpected” response mentioned
in the Introduction. The full response diagram, Figure 3a, and
its projection into the phase plane, Figure 3b, including the
trajectory shown, resolve the apparent paradox. Figure 3c shows
the corresponding time series of relaxation to the competing
attractor. The response is similar to that observed in experiment,
Figure 2a,b.

Figure 4a illustrates the response of the same system to a
sudden and persistent parameter change that is large enough to
cross the separatrix, but too small to cause a saddle-node
transition. The steady states before and after the parameter
change are marked by the open and solid circles, respectively.
The sudden perturbation lifts the system away from the SS1
manifold along the horizontal arrow and, in doing so, crosses
the separatrix surface. Then the system relaxes to the competing
SS2 (solid circle) at the new parameter value. The correspond-
ing time series for a supercritical parameter jump is shown in
Figure 4b and should be compared with the experimental result,
Figure 2d. The projection into the phase plane illustrates the
steady states at the old (open circles) and new (open circles)
parameter values, together with the old and new separatrices:
the parametric perturbation redraws the basin boundary such
that the old, unperturbed phase point falls now into the basin
of attraction of the competing SS2 (solid circle) on the lower
branch. Again, the projection into the (a,z) plane gives the
unexpected responses of Figures 1 and 2a. In general, the
critical value of the perturbation depends on the rate with which
the perturbation is applied.
3.3. Discussion.We have demonstrated experimentally and

computationally two types of basin-boundary transitions that
may result from large, sudden changes of a dynamical variable
on the one hand or of a control parameter on the other hand. In
general, the critical value of a perturbation depends on the rate
with which the perturbation is applied.23 In addition to drawing
the attention of experimentalists to the importance of choosing
a sufficiently small step size in the determination of bifurcation
diagrams and to the shortcomings of (1+ 1)-dimensional
response diagrams, the three further aims are presently: to
explain the close relationship of BBC transitions to the
phenomena of excitability and canard explosions,19,20to explain
why such transitions are more likely in stiff systems with widely
separated time scales, and finally to determine the reaction step
that plays the key role in triggering the basin-boundary
transitions.
The bistability transition induced by a sudden, nonadiabatic

change of control parameter results from basin-boundary
crossing and is closely related to excitability and canard
explosions. In all these phenomena there exists a threshold or
boundary in phase space such that trajectories, starting arbitrarily
close but on opposite sides of it, evolve in qualitatively different
ways. In the case of excitability,20,21a subcritical perturbation
results in a trajectory that smoothly returns the system to its
starting point, whereas a supercritical perturbation results in a
large excursion in phase space before eventually returning the
system to its steady state. In canards, small amplitude oscil-
lations are transformed into large relaxation oscillations when
the small limit cycle crosses a locus of points where the
curvature of trajectories is zero.19,20

Although BBC transitions are not restricted to stiff dynamical
systems, they are more likely to occur in such systems. To
illustrate the relationship between stiffness and the geometry
of basin boundaries, consider the classical Bonhoeffer-van der
Pol system,13 whose equations and parameters values are given
in the caption of Figure 6. Changing the time scale parameter
ε changes neither the nullclines nor the values of the steady
state concentrations. However, for small values ofε, x changes
faster thanzand the trajectories are therefore nearly parallel to
thex -axis, except on the S-shapedx nullcline. Hence, atε ,
1, the inset of the saddle point (the basin boundary) also bends
in the direction of the fastx variable. This is shown in Figure
6. Consequently, forε , 1 the threshold for basin-boundary

Figure 5. Response diagram showing the distance of the basin-
boundary surface in thez direction.
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transitions becomes smaller, and relatively small parameter
changes may lead to the transitions of the type shown in Figure
4.
The gradual convergence of the stable SS1 manifold and the

separatrix at the saddle-node point for the Oregonator model,
as shown in Figure 5, makes noise-induced transitions very
likely in the neighborhood of the saddle-node point. Hence, in
the presence of external noise, noise-induced transitions will
occur in proportion to the noise level and the reduced threshold
values, preventing the system from ever reaching the adiabatic
saddle-node point predicted by the (1+ 1)-d response diagram,
Figure 1. In retrospect it is therefore not surprising that the
search for critical growth of fluctuations, anticipated near the
bistability limit of the chlorite/iodide reaction was not success-

ful.14 The type of facile, noise-induced BBC transition discussed
here lends further support to the earlier explanation15 of the
effect of stirring on the attributes of limit cycle oscillations: it
is often observed that the oscillation amplitude and period
decrease when an oscillating system is stirred more slowly and
becomes more inhomogeneous.15,16 It was argued15 that noise-
induced perturbations similar to the ones considered here for
bistable systems will cause the limit cycle to contract and
oscillations to accelerate.
To conclude this Discussion, we examine the chemical basis

of the divergence of trajectories that start arbitrarily close to,
but on opposits sides of, a basin boundary. Figure 7 illustrates
the evolution of two such trajectories. They start at (y1,z1) and
(y2,z2) wherey1 ) y2 andz1 ) z2 + 10-8. The three left panels
are the phase portrait (panel a) and time evolution of the
variablesy (panel b) andz (panel c) of the trajectories from
their initial conditions to the final states. The right-hand panels
d, e, f illustrate the evolution of the two adjacent trajectories
up to a point where they suddenly begin to diverge. The key
question, at this point, is: which chemical step in mechanism
1 is responsible for this critical divergence?
Figure 7e,f shows that the values ofzdiverge much less than

those ofyshence the clue to the divergence must be sought in
the evolution ofy. The reason why initially the variablez
diverges very little can be understood by examining the rates
of the two steps 1c and 1e (Figure 8c,e), which contribute to
the rate of change ofz. The rate of step 1e is twice as large as
that of 1c, but its value does not diverge significantly. The
rate of change ofy ) [Br-] is governed by steps 1a, 1b, and
1e. Among these three steps, 1e may be discounted since the
divergence in its rate is small (Figure 8e). Similarly, step 1a
may be neglected since the absolute magnitude of its rate is 1
order of magnitude less than that of 1b. Hence, we conclude
that the reaction step 1b (i.e. the production of HOBr from

Figure 6. Phase portrait for the Bonhoeffer-van der Pol system:x̆
) 1/ε(x - (x3/3) + y), y̆ ) b - x - cy. Parameter values arec ) 2.0,
b ) 0.1. The dotted lines are the basin boundaries for two different
values ofε. Note how the basin boundary appoaches the steady states
at the lower value ofε.

Figure 7. (a) Divergence of two trajectories (labeled 1 and 2) starting
arbitrarily close to but on opposite sides of the basin boundary for
system 2.a) 0.055. The full dots are the asymptotic steady states. (b,
c) time evolution of the variablesy, z along the two trajectories. (d, e,
f) show the initial divergence of (a, b, c) in greater detail.

Figure 8. Rates of the five steps in scheme 1 along the two trajectories
shown in Figure 7.
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HBrO3 and Br-) is the key step that triggers the divergence of
trajectories near the unstable manifold.
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